Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 317, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182597

RESUMO

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of the P23-45 RNAPs with other RNAPs suggest that, despite the extensive functional differences, the two P23-45 RNAPs originate from an ancient gene duplication in an ancestral phage. Our findings demonstrate striking adaptability of RNAPs that can be attained within a single virus species.


Assuntos
Bacteriófagos , Piridinolcarbamato , Vírion/genética , Bacteriófagos/genética , Técnicas de Tipagem Bacteriana , RNA Polimerases Dirigidas por DNA/genética
2.
Nat Commun ; 14(1): 7734, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007494

RESUMO

The ribosomally synthesized and post-translationally modified peptide (RiPPs) class of natural products has undergone significant expansion due to the rapid growth in genome sequencing data. Using a bioinformatics approach, we identify the dehydrazoles, a novel class of hypermodified RiPPs that contain both side chain dehydration of Ser residues, and backbone heterocyclization at Ser, Thr, and Cys residues to the corresponding azol(in)es. Structure elucidation of the hypermodified peptide carnazolamide, a representative class member, shows that 18 post-translational modifications are installed by just five enzymes. Complete biosynthetic reconstitution demonstrates that dehydration is carried out by an unusual DUF4135 dehydration domain fused to a zinc-independent cyclase domain (CcaM). We demonstrate that CcaM only modifies Ser residues that precede an azole in the core peptide. As heterocyclization removes the carbonyl following the Ser residue, CcaM likely catalyzes dehydration without generating an enolate intermediate. Additionally, CcaM does not require the leader peptide, and this core-dependence effectively sets the order for the biosynthetic reactions. Biophysical studies demonstrate direct binding of azoles to CcaM consistent with this azole moiety-dependent dehydration. Bioinformatic analysis reveals more than 50 related biosynthetic gene clusters that contain additional catalysts that may produce structurally diverse scaffolds.


Assuntos
Desidratação , Peptídeos , Humanos , Peptídeos/química , Sinais Direcionadores de Proteínas/genética , Azóis , Processamento de Proteína Pós-Traducional
3.
ACS Cent Sci ; 9(10): 1944-1956, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37901177

RESUMO

In bacteria, Ser/Thr protein kinase-like sequences are found as part of large multidomain polypeptides that biosynthesize lanthipeptides, a class of natural products distinguished by the presence of thioether cross-links. The kinase domain phosphorylates Ser or Thr residues in the peptide substrates. Subsequent ß-elimination by a lyase domain yields electrophilic dehydroamino acids, which can undergo cyclase domain-catalyzed cyclization to yield conformationally restricted, bioactive compounds. Here, we reconstitute the biosynthetic pathway for a class III lanthipeptide from Bacillus thuringiensis NRRL B-23139, including characterization of a two-component protease for leader peptide excision. We also describe the first crystal structures of a class III lanthipeptide synthetase, consisting of the lyase, kinase, and cyclase domains, in various states including complexes with its leader peptide and nucleotide. The structure shows interactions between all three domains that result in an active conformation of the kinase domain. Biochemical analysis demonstrates that the three domains undergo movement upon binding of the leader peptide to establish interdomain allosteric interactions that stabilize this active form. These studies inform on the regulatory mechanism of substrate recognition and provide a framework for engineering of variants of biotechnological interest.

5.
Nat Commun ; 14(1): 5704, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709735

RESUMO

Catalytic asymmetric α-alkylation of carbonyl compounds represents a long-standing challenge in synthetic organic chemistry. Herein, we advance a dual biocatalytic platform for the efficient asymmetric alkylation of α-keto acids. First, guided by our recently obtained crystal structures, we develop SgvMVAV as a general biocatalyst for the enantioselective methylation, ethylation, allylation and propargylation of a range of α-keto acids with total turnover numbers (TTNs) up to 4,600. Second, we mine a family of bacterial HMTs from Pseudomonas species sharing less than 50% sequence identities with known HMTs and evaluated their activities in SAM regeneration. Our best performing HMT from P. aeruginosa, PaHMT, displays the highest SAM regeneration efficiencies (TTN up to 7,700) among HMTs characterized to date. Together, the synergistic use of SgvMVAV and PaHMT affords a fully biocatalytic protocol for asymmetric methylation featuring a record turnover efficiency, providing a solution to the notorious problem of asymmetric alkylation.


Assuntos
Engenharia , Metiltransferases , Metiltransferases/genética , Alquilação , Biocatálise , Cetoácidos , Metenamina , Pseudomonas aeruginosa/genética
6.
Cell Rep ; 42(1): 111951, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640354

RESUMO

Influenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning. Our result shows that while its antigenic regions have high mutational tolerance, there are solvent-exposed regions with low mutational tolerance. We also find that protein stability is a major determinant of NA mutational fitness. The deep mutational scanning result correlates well with mutational fitness inferred from natural sequences using a protein language model, substantiating the relevance of our findings to the natural evolution of circulating strains. Additional analysis further suggests that human H3N2 NA is far from running out of mutations despite already evolving for >50 years. Overall, this study advances our understanding of the evolutionary potential of NA and the underlying biophysical constraints, which in turn provide insights into NA-based vaccine design.


Assuntos
Influenza Humana , Humanos , Influenza Humana/genética , Vírus da Influenza A Subtipo H3N2/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Evolução Molecular , Mutação/genética
7.
Proc Natl Acad Sci U S A ; 120(3): e2217523120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634136

RESUMO

In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.


Assuntos
Peptídeos , Proteínas , Humanos , Peptídeos/química , Glutationa , Bactérias/metabolismo , Catálise , Oxigênio
8.
Nat Chem Biol ; 19(1): 111-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280794

RESUMO

YcaO enzymes catalyze ATP-dependent post-translation modifications on peptides, including the installation of (ox/thi)azoline, thioamide and/or amidine moieties. Here we demonstrate that, in the biosynthesis of the bis-methyloxazolic alkaloid muscoride A, the YcaO enzyme MusD carries out both ATP-dependent cyclodehydration and peptide bond cleavage, which is a mechanism unprecedented for such a reaction. YcaO-catalyzed modifications are proposed to occur through a backbone O-phosphorylated intermediate, but this mechanism remains speculative. We report, to our knowedge, the first characterization of an acyl-phosphate species consistent with the proposed mechanism for backbone amide activation. The 3.1-Å-resolution cryogenic electron microscopy structure of MusD along with biochemical analysis allow identification of residues that enable peptide cleavage reaction. Bioinformatics analysis identifies other cyanobactin pathways that may deploy bifunctional YcaO enzymes. Our structural, mutational and mechanistic studies expand the scope of modifications catalyzed by YcaO proteins to include peptide hydrolysis and provide evidence for a unifying mechanism for the catalytically diverse outcomes.


Assuntos
Peptídeos , Biossíntese de Proteínas , Peptídeos/química , Proteólise , Trifosfato de Adenosina/metabolismo , Peptídeo Hidrolases/metabolismo
9.
Nat Chem Biol ; 19(4): 460-467, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509904

RESUMO

Promiscuous enzymes that modify peptides and proteins are powerful tools for labeling biomolecules; however, directing these modifications to desired substrates can be challenging. Here, we use computational interface design to install a substrate recognition domain adjacent to the active site of a promiscuous enzyme, catechol O-methyltransferase. This design approach effectively decouples substrate recognition from the site of catalysis and promotes modification of peptides recognized by the recruitment domain. We determined the crystal structure of this novel multidomain enzyme, SH3-588, which shows that it closely matches our design. SH3-588 methylates directed peptides with catalytic efficiencies exceeding the wild-type enzyme by over 1,000-fold, whereas peptides lacking the directing recognition sequence do not display enhanced efficiencies. In competition experiments, the designer enzyme preferentially modifies directed substrates over undirected substrates, suggesting that we can use designed recruitment domains to direct post-translational modifications to specific sequence motifs on target proteins in complex multisubstrate environments.


Assuntos
Peptídeos , Processamento de Proteína Pós-Traducional , Peptídeos/química , Domínio Catalítico , Catálise , Especificidade por Substrato
10.
J Am Chem Soc ; 144(46): 21116-21124, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351243

RESUMO

Thiazole-containing pyritides (thiopeptides) are ribosomally synthesized and post-translationally modified peptides (RiPPs) that have attracted interest owing to their potent biological activities and structural complexity. The class-defining feature of a thiopeptide is a six-membered, nitrogenous heterocycle formed by an enzymatic [4 + 2]-cycloaddition. In rare cases, piperidine or dehydropiperidine (DHP) is present; however, the aromatized pyridine is considerably more common. Despite significant effort, the mechanism by which the central pyridine is formed remains poorly understood. Building on our recent observation of the Bycroft-Gowland intermediate (i.e., the direct product of the [4 + 2]-cycloaddition), we interrogated thiopeptide pyridine synthases using a combination of targeted mutagenesis, kinetic assays, substrate analogs, enzyme-substrate cross-linking, and chemical rescue experiments. Collectively, our data delineate roles for several conserved residues in thiopeptide pyridine synthases. A critical tyrosine facilitates the final aromatization step of pyridine formation. This work provides a foundation for further exploration of the [4 + 2]-cycloaddition reaction and future customization of pyridine-containing macrocyclic peptides.


Assuntos
Peptídeos , Tiazóis , Peptídeos/química , Tiazóis/química , Reação de Cicloadição , Piridinas
11.
Curr Opin Chem Biol ; 71: 102214, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202046

RESUMO

The phosphonate class of natural products have received significant interests in the post-genomic era due to the relative ease with which their biosynthetic genes may be identified and the resultant final products be characterized. Recent large-scale studies of the elucidation and distributions of phosphonate pathways have provided a robust landscape for deciphering the underlying biosynthetic logic. A recurrent theme in phosphonate biosynthetic pathways is the interweaving of enzymatic reactions across different routes, which enables diversification to elaborate chemically novel scaffolds. Here, we provide a few vignettes of how Nature has utilized both convergent and divergent biosynthetic strategies to compile pathways for production of novel phosphonates. These examples illustrate how common intermediates may either be generated or intercepted to diversify chemical scaffolds and provides a starting point for both biotechnological and synthetic biological applications towards new phosphonates by similar combinatorial approaches.


Assuntos
Produtos Biológicos , Organofosfonatos , Produtos Biológicos/metabolismo , Ácidos Fosforosos , Vias Biossintéticas , Organofosfonatos/metabolismo
12.
Nat Commun ; 13(1): 6443, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307418

RESUMO

Neuraminidase (NA) of human influenza H3N2 virus has evolved rapidly and been accumulating mutations for more than half-century. However, biophysical constraints that govern the evolutionary trajectories of NA remain largely elusive. Here, we show that among 70 natural mutations that are present in the NA of a recent human H3N2 strain, >10% are deleterious for an ancestral strain. By mapping the permissive mutations using combinatorial mutagenesis and next-generation sequencing, an extensive epistatic network is revealed. Biophysical and structural analyses further demonstrate that certain epistatic interactions can be explained by non-additive stability effect, which in turn modulates membrane trafficking and enzymatic activity of NA. Additionally, our results suggest that other biophysical mechanisms also contribute to epistasis in NA evolution. Overall, these findings not only provide mechanistic insights into the evolution of human influenza NA and elucidate its sequence-structure-function relationship, but also have important implications for the development of next-generation influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Neuraminidase , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Prevalência
13.
J Am Chem Soc ; 144(38): 17549-17557, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107785

RESUMO

Lanthipeptides are a class of cyclic peptides characterized by the presence of one or more lanthionine (Lan) or methyllanthionine (MeLan) thioether rings. These cross-links are produced by α,ß-unsaturation of Ser or Thr residues in peptide substrates by dehydration, followed by a Michael-type conjugate addition of Cys residues onto the dehydroamino acids. Lanthipeptides may be broadly classified into at least five different classes, and the biosynthesis of classes I-IV lanthipeptides requires catalysis by LanC cyclases that control both the site-specificity and the stereochemistry of the conjugate addition. In contrast, there are no current examples of LanCs that occur in class V biosynthetic clusters, despite the presence of lanthionine rings in these compounds. In this work, bioinformatics-guided co-occurrence analysis identifies more than 240 putative class V lanthipeptide clusters that contain a LanC cyclase. Reconstitution studies demonstrate that the cyclase-catalyzed product is notably distinct from the product formed spontaneously. Stereochemical analysis shows that the cyclase diverts the final product to a configuration that is distinct from one that is energetically favored. Structural characterization of the final product by multi-dimensional NMR spectroscopy reveals that it forms a helical stapled peptide. Mutational analysis identified a plausible order for cyclization and suggests that enzymatic rerouting to the final structure is largely directed by the construction of the first lanthionine ring. These studies show that lanthipeptide cyclases are needed for the biosynthesis of some constrained peptides, the formations of which would otherwise be energetically unfavored.


Assuntos
Bacteriocinas , Produtos Biológicos , Alanina/análogos & derivados , Bacteriocinas/química , Peptídeos/química , Peptídeos Cíclicos/química , Sulfetos/química
14.
Chem Rev ; 122(18): 14722-14814, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36049139

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.


Assuntos
Produtos Biológicos , Ribossomos , Produtos Biológicos/química , Lipídeos , Peptídeos/química , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Ribossomos/metabolismo
15.
Acc Chem Res ; 55(9): 1313-1323, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35442036

RESUMO

Biologically active peptides are a major growing class of drugs, but their therapeutic potential is constrained by several limitations including bioavailability and poor pharmacokinetics. The attachment of functional groups like lipids has proven to be a robust and effective strategy for improving their therapeutic potential. Biochemical and bioactivity-guided screening efforts have identified the cyanobactins as a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that are modified with lipids. These lipids are attached by the F superfamily of peptide prenyltransferase enzymes that utilize 5-carbon (prenylation) or 10-carbon (geranylation) donors. The chemical structures of various cyanobactins initially showed isoprenoid attachments on Ser, Thr, or Tyr. Biochemical characterization of the F prenyltransferases from the corresponding clusters shows that the different enzymes have different acceptor residue specificities but are otherwise remarkably sequence tolerant. Hence, these enzymes are well suited for biotechnological applications. The crystal structure of the Tyr O-prenyltransferase PagF reveals that the F enzyme shares a domain architecture reminiscent of a canonical ABBA prenyltransferase fold but lacks secondary structural elements necessary to form an enclosed active site. Binding of either cyclic or linear peptides is sufficient to close the active site to allow for productive catalysis, explaining why these enzymes cannot use isolated amino acids as substrates.Almost all characterized isoprenylated cyanobactins are modified with 5-carbon isoprenoids. However, chemical characterization demonstrates that the piricyclamides are modified with a 10-carbon geranyl moiety, and in vitro reconstitution of the corresponding PirF shows that the enzyme is a geranyltransferase. Structural analysis of PirF shows an active site nearly identical with that of the PagF prenyltransferase but with a single amino acid substitution. Of note, mutation at this residue in PagF or PirF can completely switch the isoprenoid donor specificity of these enzymes. Recent efforts have resulted in significant expansion of the F family with enzymes identified that can carry out C-prenylations of Trp, N-prenylations of Trp, and bis-N-prenylations of Arg. Additional genome-guided efforts based on the sequence of F enzymes identify linear cyanobactins that are α-N-prenylated and α-C-methylated by a bifunctional prenyltransferase/methyltransferase fusion and a bis-α-N- and α-C-prenylated linear peptide. The discovery of these different classes of prenyltransferases with diverse acceptor residue specificities expands the biosynthetic toolkit for enzymatic prenylation of peptide substrates.In this Account, we review the current knowledge scope of the F family of peptide prenyltransferases, focusing on the biochemical, structure-function, and chemical characterization studies that have been carried out in our laboratories. These enzymes are easily amenable for diversity-oriented synthetic efforts as they can accommodate substrate peptides of diverse sequences and are thus attractive catalysts for use in synthetic biology approaches to generate high-value peptidic therapeutics.


Assuntos
Dimetilaliltranstransferase , Carbono , Catálise , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Lipídeos , Peptídeos/química , Terpenos
16.
ACS Chem Biol ; 17(5): 1215-1225, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35420020

RESUMO

Members of the YcaO superfamily are among the most common post-translational modification enzymes in natural product biosynthesis, with wide usage in biotechnology and synthetic biology applications. Here, we use domain-swapped chimeras and discovered unstructured regions in cyanobactin YcaOs that guide interactions with the substrates, governing access to interior amino acids in the substrates and explaining the chemoselectivity between PatD and TruD. These results define how the cyanobactin heterocyclases modify exceptionally sequence diverse substrates, yet with a high degree of positional and nucleophile selectivity.


Assuntos
Peptídeos Cíclicos , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Peptídeos Cíclicos/química
17.
Proc Natl Acad Sci U S A ; 119(13): e2116578119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316135

RESUMO

SignificanceThe channel-forming proteusins are bacterial helical peptides that allow permeation of positively charged ions to influence membrane potential and cellular physiology. We biochemically characterize the effect of two critical posttranslational modifications on the secondary structure of the peptide substrate. We determine how a methyl group can be added to the side chains of D-Asn residues in a peptide substrate and show how flanking residues influence selectivity. These studies should foster the development of small-molecule peptide ion channels as therapeutics.


Assuntos
Amidas , Citotoxinas , Metilação , Peptídeos/química , Processamento de Proteína Pós-Traducional
18.
ACS Catal ; 12(22): 14006-14014, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36793448

RESUMO

N-methylation of peptide backbones has often been utilized as a strategy towards the development of peptidic drugs. However, difficulties in the chemical synthesis, high cost of enantiopure N-methyl building blocks, and subsequent coupling inefficiencies have hampered larger-scale medicinal chemical efforts. Here, we present a chemoenzymatic strategy for backbone N-methylation by bioconjugation of peptides of interest to the catalytic scaffold of a borosin-type methyltransferase. Crystal structures of a substrate tolerant enzyme from Mycena rosella guided the design of a decoupled catalytic scaffold that can be linked via a heterobifunctional crosslinker to any peptide substrate of choice. Peptides linked to the scaffold, including those with non-proteinogenic residues, show robust backbone N-methylation. Various crosslinking strategies were tested to facilitate substrate disassembly, which enabled a reversible bioconjugation approach that efficiently released modified peptide. Our results provide general framework for the backbone N-methylation on any peptide of interest and may facilitate the production of large libraries of N-methylated peptides.

19.
Cell Chem Biol ; 28(12): 1740-1749.e6, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34283964

RESUMO

Attachment of sugars to nitrogen and oxygen in peptides is ubiquitous in biology, but glycosylation of sulfur atoms has only been recently described. Here, we characterize two S-glycosyltransferases SunS and ThuS that selectively glycosylate one of five Cys residues in their substrate peptides; substitution of this Cys with Ser results in a strong decrease in glycosylation activity. Crystal structures of SunS and ThuS in complex with UDP-glucose or a derivative reveal an unusual architecture in which a glycosyltransferase type A (GTA) fold is decorated with additional domains to support homodimerization. Dimer formation creates an extended cavity for the substrate peptide, drawing functional analogy with O-glycosyltransferases involved in cell wall biosynthesis. This extended cavity contains a sharp bend that may explain the site selectivity of the glycosylation because the target Cys is in a Gly-rich stretch that can accommodate the bend. These studies establish a molecular framework for understanding the unusual S-glycosyltransferases.


Assuntos
Glicosiltransferases/metabolismo , Cistina/química , Cistina/genética , Cistina/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074759

RESUMO

The epoxide-containing phosphonate natural product fosfomycin is a broad-spectrum antibiotic used in the treatment of cystitis. Fosfomycin is produced by both the plant pathogen Pseudomonas syringae and soil-dwelling streptomycetes. While the streptomycete pathway has recently been fully elucidated, the pseudomonad pathway is still mostly elusive. Through a systematic evaluation of heterologous expression of putative biosynthetic enzymes, we identified the central enzyme responsible for completing the biosynthetic pathway in pseudomonads. The missing transformation involves the oxidative decarboxylation of the intermediate 2-phosphonomethylmalate to a new intermediate, 3-oxo-4-phosphonobutanoate, by PsfC. Crystallographic studies reveal that PsfC unexpectedly belongs to a new class of diiron metalloenzymes that are part of the polymerase and histidinol phosphatase superfamily.


Assuntos
Proteínas de Bactérias/química , Fosfomicina , Hidrolases/química , Metaloproteínas/química , Pseudomonas syringae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Pseudomonas syringae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...